源自建筑环境的规律性的线性透视图可用于在线重新校准内在和外在的摄像机参数,但是由于场景中的不规则性,线段估计和背景混乱中的不确定性,这些估计值可能是不可靠的。在这里,我们通过四个计划来应对这一挑战。首先,我们使用PanoContext全景图数据集[27]来策划一个新颖而逼真的平面投影数据集,这些数据集在广泛的场景,焦距和相机姿势上。其次,我们使用这个新颖的数据集和YorkurbandB [4]来系统地评估文献中经常发现的线性透视偏差度量,并表明偏差度量和可能性模型的选择对可靠性具有巨大的影响。第三,我们使用这些发现来创建一个用于在线摄像机校准的新型系统,我们称之为fr,并表明它的表现优于先前的最新状态,从而大大减少了估计的摄像机旋转和焦距的错误。我们的第四个贡献是一种新颖有效的方法来估计不确定性,可以通过战略性地选择用于重新校准的哪种框架来大大提高对性能至关重要的应用程序的在线可靠性。
translated by 谷歌翻译
RGB-D显着性检测将来自RGB图像和深度图的信息集成在挑战条件下改善突出区域的预测。 RGB-D显着性检测的关键是在两个模态的多个尺度上完全挖掘和保险丝信息。以前的方法倾向于通过本地操作分开应用多尺度和多模态融合,这不能捕获远程依赖性。在这里,我们提出了一个基于变换器的网络来解决这个问题。我们所提出的架构由两个模块组成:基于变换器的模态功能增强模块(TWFEM)和基于变压器的特征融合模块(TFFM)。 TFFM通过同时将特征与来自多个位置的两个模式集成在所有位置上的特征来进行足够的特征融合。 TWFEM通过在TFFM之前的同一模态中选择和集成来自其他刻度的互补信息来增强每种比例的特征。我们表明,变压器是一种统一的操作,它在特征融合和特征增强中具有良好的功效,并简化了模型设计。六个基准数据集的广泛实验结果表明,我们所提出的网络对最先进的RGB-D显着性检测方法表现出有利。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
Extracting complex structures from grid-based data is a common key step in automated medical image analysis. The conventional solution to recovering tree-structured geometries typically involves computing the minimal cost path through intermediate representations derived from segmentation masks. However, this methodology has significant limitations in the context of projective imaging of tree-structured 3D anatomical data such as coronary arteries, since there are often overlapping branches in the 2D projection. In this work, we propose a novel approach to predicting tree connectivity structure which reformulates the task as an optimization problem over individual steps of a recursive process. We design and train a two-stage model which leverages the UNet and Transformer architectures and introduces an image-based prompting technique. Our proposed method achieves compelling results on a pair of synthetic datasets, and outperforms a shortest-path baseline.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
Grasping is an incredible ability of animals using their arms and limbs in their daily life. The human hand is an especially astonishing multi-fingered tool for precise grasping, which helped humans to develop the modern world. The implementation of the human grasp to virtual reality and telerobotics is always interesting and challenging at the same time. In this work, authors surveyed, studied, and analyzed the human hand-grasping behavior for the possibilities of haptic grasping in the virtual and remote environment. This work is focused on the motion and force analysis of fingers in human hand grasping scenarios and the paper describes the transition of the human hand grasping towards a tripod haptic grasp model for effective interaction in virtual reality.
translated by 谷歌翻译
Multivariate time series forecasting with hierarchical structure is pervasive in real-world applications, demanding not only predicting each level of the hierarchy, but also reconciling all forecasts to ensure coherency, i.e., the forecasts should satisfy the hierarchical aggregation constraints. Moreover, the disparities of statistical characteristics between levels can be huge, worsened by non-Gaussian distributions and non-linear correlations. To this extent, we propose a novel end-to-end hierarchical time series forecasting model, based on conditioned normalizing flow-based autoregressive transformer reconciliation, to represent complex data distribution while simultaneously reconciling the forecasts to ensure coherency. Unlike other state-of-the-art methods, we achieve the forecasting and reconciliation simultaneously without requiring any explicit post-processing step. In addition, by harnessing the power of deep model, we do not rely on any assumption such as unbiased estimates or Gaussian distribution. Our evaluation experiments are conducted on four real-world hierarchical datasets from different industrial domains (three public ones and a dataset from the application servers of Alipay's data center) and the preliminary results demonstrate efficacy of our proposed method.
translated by 谷歌翻译
Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.
translated by 谷歌翻译
Understanding why a model makes certain predictions is crucial when adapting it for real world decision making. LIME is a popular model-agnostic feature attribution method for the tasks of classification and regression. However, the task of learning to rank in information retrieval is more complex in comparison with either classification or regression. In this work, we extend LIME to propose Rank-LIME, a model-agnostic, local, post-hoc linear feature attribution method for the task of learning to rank that generates explanations for ranked lists. We employ novel correlation-based perturbations, differentiable ranking loss functions and introduce new metrics to evaluate ranking based additive feature attribution models. We compare Rank-LIME with a variety of competing systems, with models trained on the MS MARCO datasets and observe that Rank-LIME outperforms existing explanation algorithms in terms of Model Fidelity and Explain-NDCG. With this we propose one of the first algorithms to generate additive feature attributions for explaining ranked lists.
translated by 谷歌翻译